

Simplify and Improve IMS Administration by Leveraging Your Storage System

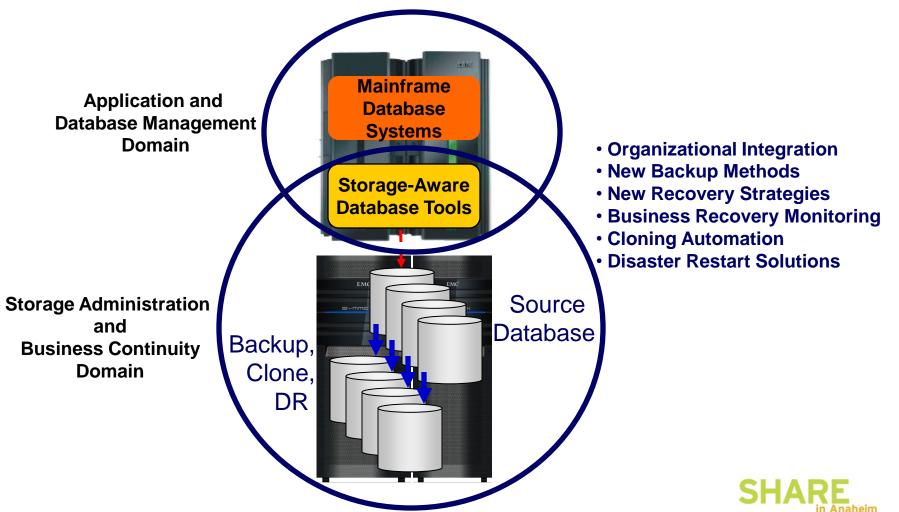
Ron Haupert Rocket Software, Inc.

March 3, 2011 Session Number: 8568

Session Agenda

- IMS Database and Storage Integration Overview
- IMS System Level Backup Methodologies and Storage System Integration
- Cloning IMS Systems Using Storage-Based Fastreplication
- Refreshing IMS Databases by Leveraging Your Storage Facilities
- IMS Storage-Aware Database Products
- Implementation Planning Considerations
- Session Summarization

Database and Storage Administration Trends and Directions



- Large IMS systems require high availability
 - Fast and non-intrusive backup and cloning facilities are required
 - Fast recovery capabilities minimize downtime and promote high availability
 - Most backup, recovery and cloning solutions do not leverage storagebased fast-replication facilities
- Storage-based fast-replication facilities are under-utilized
 - Tend to be used by storage organizations
 - Tend not to be used by database administrators (DBAs)
- Storage-aware database products allow DBAs to use fastreplication in a safe and transparent manner
 - Provides fast and non-intrusive backup and cloning operations
 - Simplifies recovery operations and reduces recovery time
 - Simplifies disaster recovery procedures

Database and Storage Integration

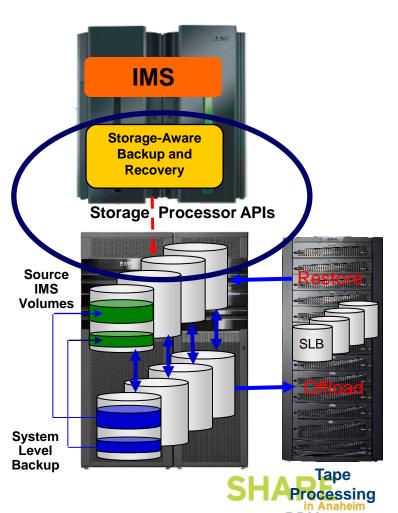
Database and Storage Integration Operational Advantages

- Reduce backup, recovery, and cloning administration costs
- Reduce host CPU and I/O resource utilization
- Perform backups and create clone copies instantly
- Reduce recovery time with fast restore and parallel recovery
- Simplify disaster recovery operations and procedures
- DBMS and storage-based fast-replication integration
 - Leverage storage processors and fast-replication investments
 IBM, EMC, HDS, STK
 - Expose fast-replication capabilities to DBAs safely and transparently using "storage-aware" database utilities
- Provide a sophisticated infrastructure and metadata to manage the IMS and storage processor coordination

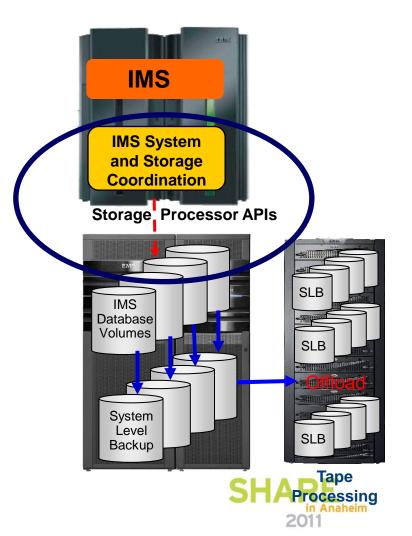
Database and Storage Integration New Solutions for DBAs to Consider

- DBAs use traditional IMS backup and recovery tools
 - Hard to integrate new backup and recovery methodologies
 - Uncomfortable with new backup and recovery solutions
- Lack of IMS and storage-administration coordination
 - Storage processor fast-replication facilities are not well understood by application and DBA personnel
 - DBAs don't trust storage technologies
 - IMS applicability of fast-replication not well understood by storage administrators
 - Storage groups don't trust DBAs
- <u>Storage-aware IMS utilities resolve these issues</u>

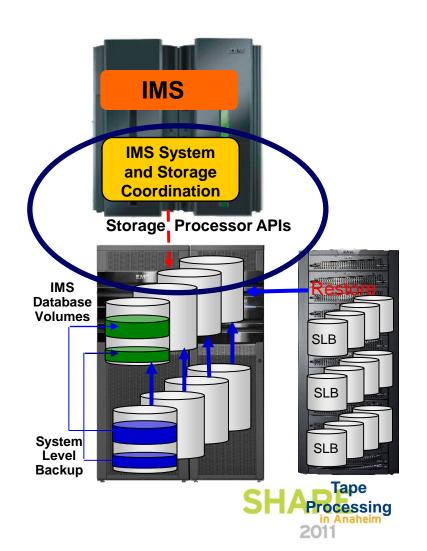
IMS System Level Backup


- Backup complete IMS systems as a unit without affecting running applications
 - IMS backup components include:
 - Active and archive logs
 - RECONs
 - All IMS database data sets
 - IMS system data sets including ACBLIBs, DBDLIBs, PGMLIBs, etc.
 - All associated ICF User catalogs
 - Backups performed instantly using storage-based fast-replication
- System level backups are the foundation for federated backup and recovery solutions
- System backup and cloning methodologies are difficult to implement without sophisticated automation
 - "Split-mirror" backup methodologies pioneered in late 1990s
 - Valuable concept but hard to implement

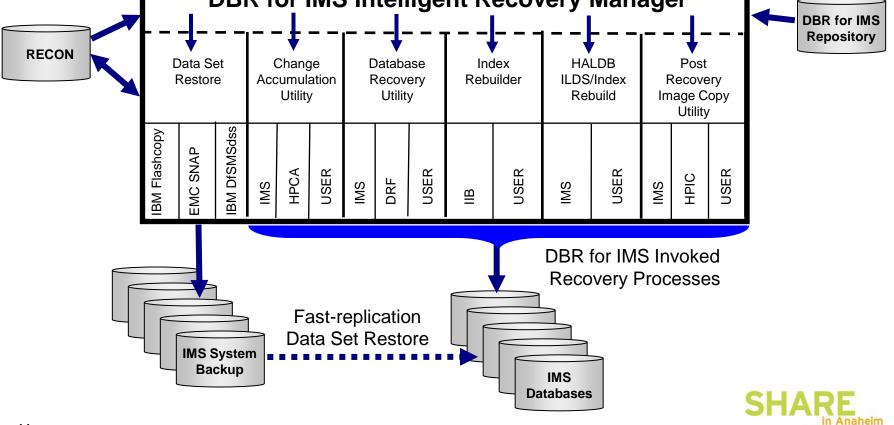
IMS System Level Backup Functional Requirements


- Integrate IMS backup, restore, and recovery process with storage-based fast-replication
- Provide easy and fast backup and restore of IMS systems and applications
- Support common storage systems
 - IBM FlashCopy (FC)
 - EMC TimeFinder/Mirror/Clone/Snap, FC
 - HDS Shadow Image, FC
- Feature requirements include:
 - Database system discovery and configuration management
 - Database system backup and recovery operations
 - System backup validation
 - Object and application recovery
 - Active metadata repository
 - Encrypted tape offload support
 - DR preparation and management

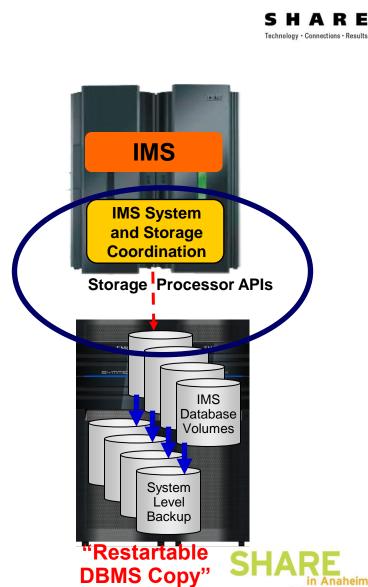
IMS System Level Backup


- Storage-based backup reduces processing and administration costs
- Fast-replication is used to perform IMS backup and restore functions
 - Full system backups complete in seconds
 - Backup performed without host CPU or I/O
- Backup groups of databases with no application affect or down time
 - Backup windows are reduced or eliminated
 - Extend online or batch processing windows
- Data consistency ensured
 - IMS suspend process
 - Storage-based consistency functions
- Automated backup offload management

IMS System Level Backup System and Application Recovery

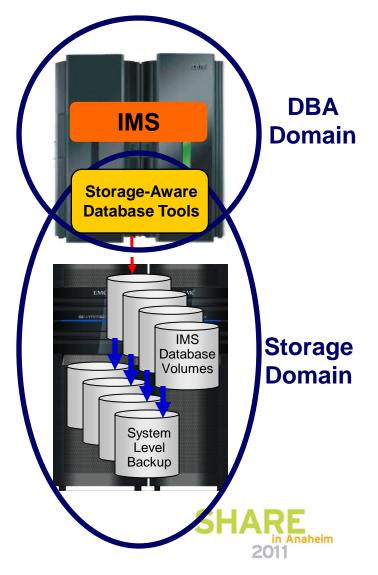

- Recover IMS systems or databases from disk or tape automatically
- Faster recovery
 - Instantaneous system-restore process
 - Coordinated parallel restore and recovery operations minimize down time
- IMS system backup can be used for database or application recovery
 - Data sets snapped to restore data
 - Parallel log apply reduces recovery time
- One system backup used for system, application, disaster recovery

Mainstar DBR for IMS Storage Integrated IMS Recovery Example

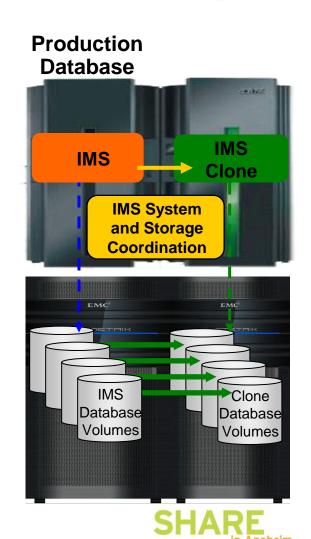


DBR Managed IMS Application Recovery
DBR for IMS Intelligent Recovery Manager

IMS System Level Backup Disaster Recovery Benefits


- Simplifies disaster recovery operations
 - System-level backup for restart
 - System-level backup and roll forward
- System backup is "restartable"
 - Restore volumes containing the last SLB
 - Performs recovery during normal database
 initialization process
 - Disaster recovery is as simple as restarting from a power failure
- Reduced recovery time at a DR site
- Transforms tedious disaster recovery procedures into a tape-based disaster restart process
 - Tape-based disaster restart solutions provide similar benefits as storage-based remote replication solutions

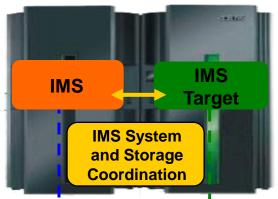
IMS System Level Backup Storage Benefits

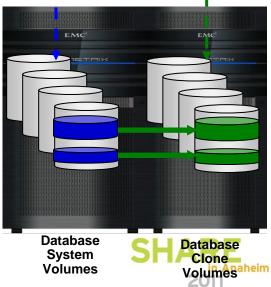

- IMS system backup used for multiple functions
 - Saves storage and processing resources
- Leverages storage-processor and fastreplication software investments
- Expose fast copy capabilities to DBAs safely and transparently using "storage aware" database utilities
- Provides a sophisticated infrastructure and metadata to manage database and storage processor coordination
- Multiple storage vendor support
 - IBM FlashCopy
 - EMC TimeFinder/Mirror/Clone, FlashCopy
 - Hitachi ShadowImage, FlashCopy
 - IBM RAMAC Virtual Array, STK SnapShot

SHARE Technology · Connections · Results

Cloning IMS Systems

- Performs IMS cloning automation
 - Simplifies IMS system cloning processes
 - Reduces cloning time and administration costs
- Leverages fast-replication facilities to clone data
 - · Data can be cloned while on-line or off-line
- Performs rapid volume reconditioning and data-set renaming on cloned IMS volumes
 - Critical component of the IMS system cloning process
- Adjusts target IMS system to accommodate and accept the cloned data
 - IMS RECONS, PROCLIB, JOBS, JCL, MDA members




Refreshing IMS Databases

- Performs automated IMS database refresh operations
 - Fast refresh of IMS databases
 - IMS DB support (FF, HALDB, DEDB)
- Verifies source and target database compatibility
- Databases copied using storagebased data set fast-replication
 - Target takes up the same amount of space as the source
- Performs target system metadata management

Production Database

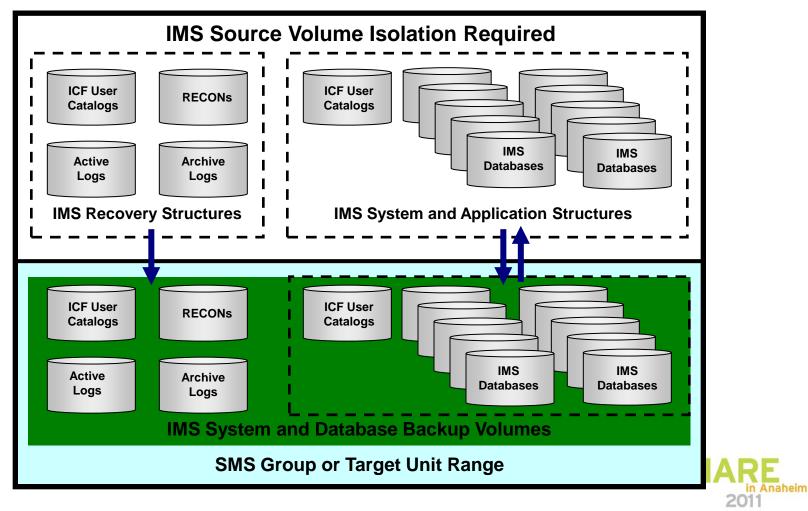
IMS Storage-Aware Database Products

- IBM IMS Cloning Tool for z/OS
 - IMS system cloning and database refresh
- Mainstar Database Backup and Recovery for IMS
 - DBR for IMS IMS backup and recovery
- Mainstar Clone and Rename for IMS
 - ICR IMS system Cloning Automation
- Mainstar Rapid Database Refresh
 - RDR IMS database refresh automation

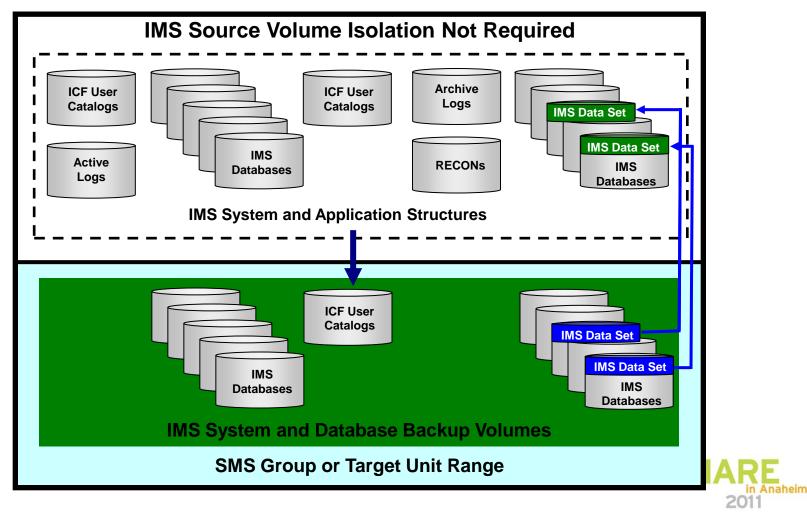
Implementation Planning Considerations Examples based on DBR for IMS, ICR, EMC and IBM Storage

- System level backup usage
 - Determine how IMS SLB(s) will be used
- SLB type
 - Determine full, data-only, or partial SLB requirements
- Backup frequency and space utilization
 - Determine backup frequency and performance and space efficient fast-replication requirements
- Copy blade selection
 - Determine storage processor capabilities, available facilities and fast-replication preferences
- Disaster restart considerations
 - Determine offsite disaster restart resources and preferences (RTO, RPO) to define appropriate disaster recovery profiles

Implementation Planning System Level Backup Usage


- SLB used for local system recovery
 - IMS data and recovery structure isolation required
 - IMS system isolation may be required
 - Non-IMS data sets will get restored when IMS system is restored
 - User catalogs will get restored
- SLB used for application or database recovery only
 - Data and recovery structure isolation is not required
- SLB used for remote disaster restart operations
 - Recovery structure isolation is not required
 - IMS system isolation may be required
 - Non-IMS data sets will get restored when IMS system is restored
 - User catalogs will get restored

IMS System Level Backup Data-Set Layout for System Recovery


IMS Application Environment

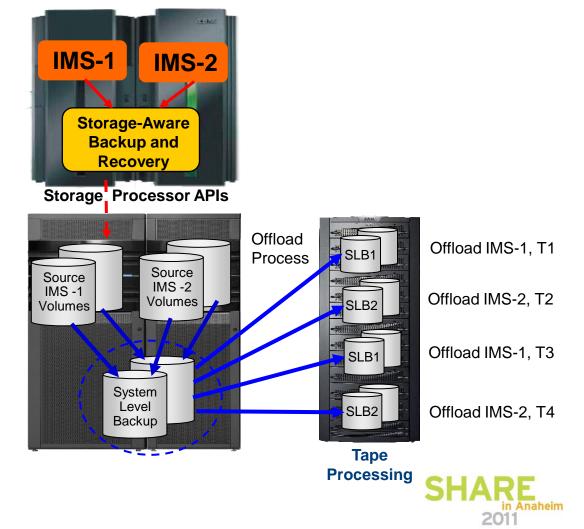
IMS System Level Backup Data-Set Layout for Application Recovery

IMS Application Environment

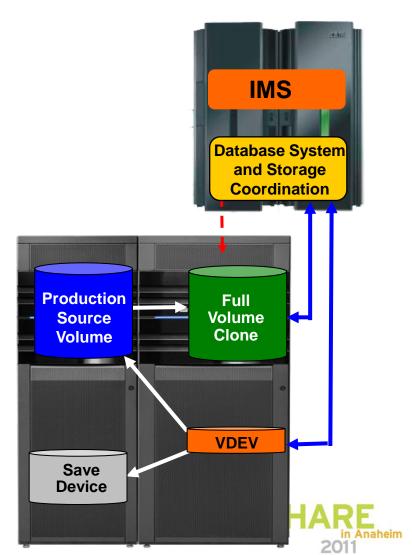
Implementation Planning Partial System-Level Backup

- Partial system-level backup (PSLB)
 - Backup volumes representing a subset of the IMS system
 - PSLBs used for database or application recovery <u>only</u>
 - Data set fast replication used to restore data
 - Log and data isolation not required
 - Desired IMS databases data should be grouped on volumes as a best practice
- PSLB <u>cannot</u> be used for system recovery
 - System recovery requires all volumes in SLB
- PSLB usage
 - Large databases or applications having unique backup requirements
 - Reduce disk utilization
 - Support more backup generations

Implementation Planning Backup Frequency and Space Utilization


- SLB type: Full, Data only, or Partial
- Determine optimal backup frequency
- Determine number of backups to keep online (on disk)
- Establish online backup duration requirements
 - SLB or PSLB used for IC creation may be deleted after ICs complete
- Determine offline (tape) backup requirements
- Consider incremental fast-replication options to reduce background copy time and resources
- Consider using space-efficient fast-replication methods like EMC VDEVs to save space
- Consider using one set of volume targets to support multiple IMS systems
 - Saves fast-replication target volume (DASD) requirement
- Consider cloning database systems to space efficient volumes using a SLB as the source

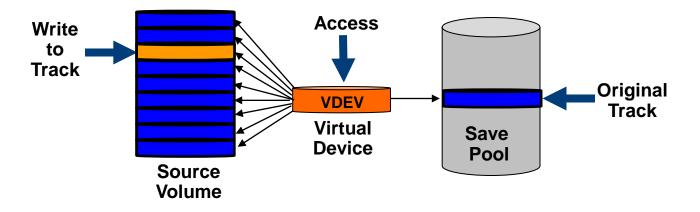
One Set of Backup Volumes for Multiple IMS Systems



- Backup IMS–1
 - SLB-1 created on disk
 - Archive SLB-1
 - Backup volumes are available after archive completes
- Backup IMS–2
 - SLB-2 created on disk
 - Archive SLB-2
 - Backup volumes are available after archive completes
- Repeat for IMS-1
- Repeat for IMS-2

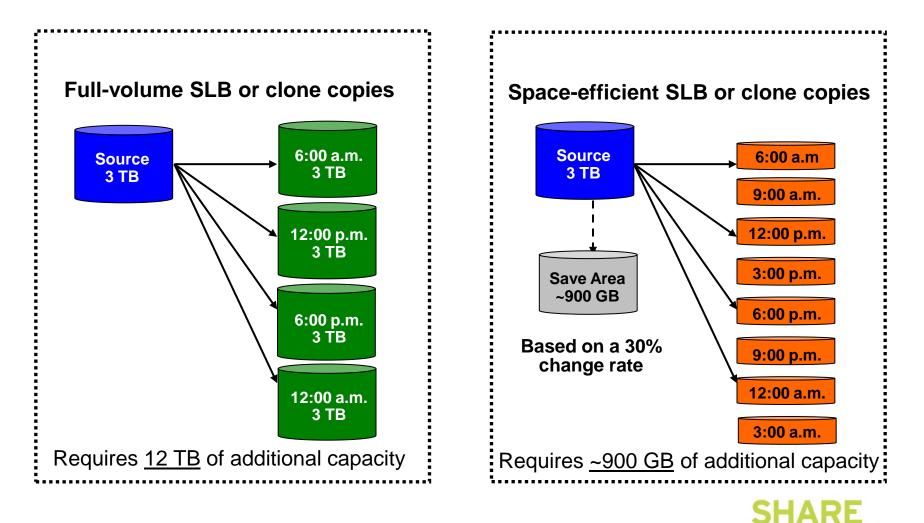
Create SLBs and Clone IMS Systems Full and Space Efficient Volumes

- EMC TimeFinder example
- TimeFinder/Clone
 - Full volume copy
 - Relationship can be retained with production volume
 - Allows TimeFinder/Clone incremental resynchronization
- TimeFinder/Snap Virtual Device (VDEV)
 - Space efficient copy
 - Allows TimeFinder/Snap incremental restore
 - Can have multiple TimeFinder/Snap volumes associated with production volume

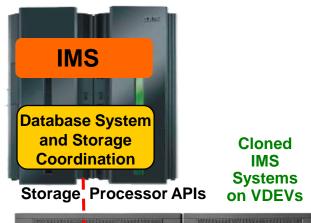


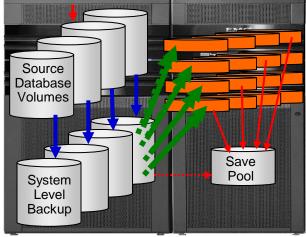
24

TimeFinder/Snap VDEV Operation Overview


- The Snap target is accessible when the copy session is activated
- The first time a track on the source volume is written to:
 - Original data on the source volume is copied to a save volume (pool)
 - Pointer on the VDEV device is changed to point to the save pool
 - The host write is written onto the track of the source volume in cache
- The track on the source volume is then updated
- Unchanged data stays in place on the source volume

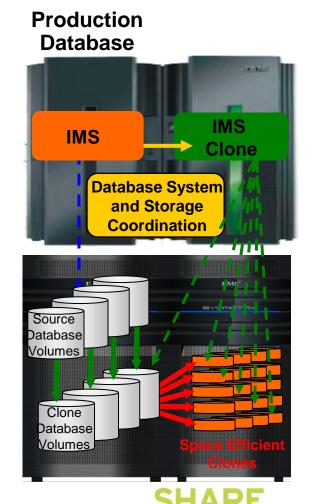
in Anaheim


Space Efficient Usage Economics Enable Frequent IMS SLB or Clone Copies



Full Volume and Space Efficient Usage Example

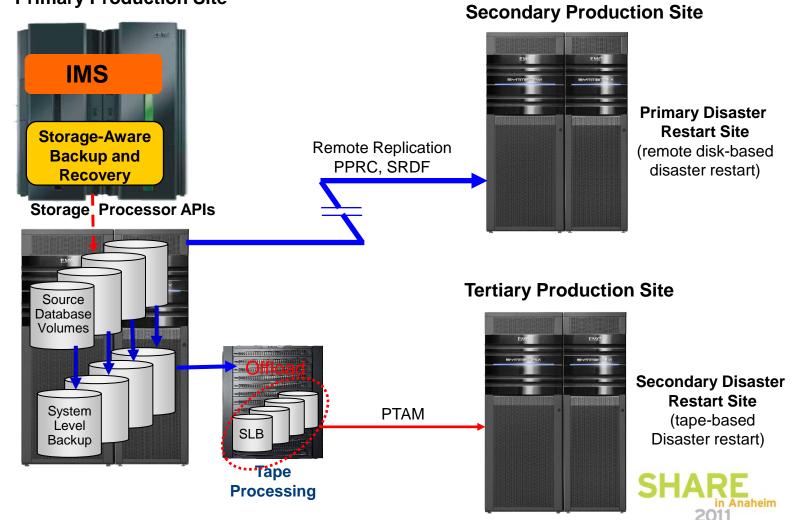
- Full IMS system-level backup created using full volume fast-replication
- IMS clone operations performed using SLB backup volumes as source
- Cloned IMS systems use virtual storage devices (VDEVs)
 - IMS SLB volumes are used to service I/O for IMS clone access
 - IMS clone writes (few) go to save pool
 - IMS SLB writes (none) go to save pool
- Storage-aware database tools provides infrastructure and metadata to manage IMS and storage processor coordination


n Anaheim

Full Volume and Space Efficient Usage Example (2)

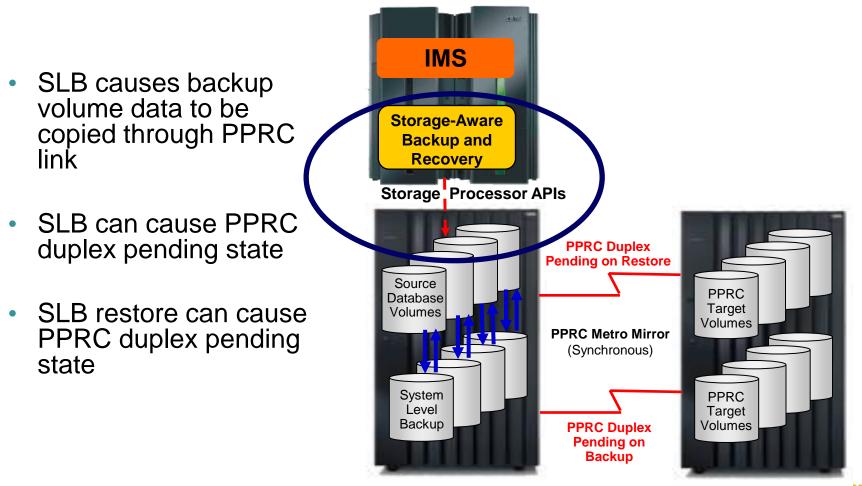
- Perform full volume IMS cloning automation
 - · Requires same amount of space as the source
- Perform space efficient clone operations
 - Use full volume clone as the source
 - No real space used for space efficient clones unless they are updated
- Operational automation may be required to re-instantiate space efficient clones when the full volume clone is re-instantiated

Implementation Planning Disaster Restart Considerations


- SLB should contain IMS data only
 - Can contain other data that is restarted together
 - Recovering IMS and other data together may require using a storage based consistency function to create the SLB
 - Cannot roll forward if IMS and other data require consistency
- Use disaster recovery profiles to prepare for roll forward recovery at the DR site
 - Disaster recovery profiles specify options on how to copy log data for DR site, etc.
 - Ensure DBRs Disaster Recovery PDS is taken offsite with archive logs and image copies
 - Reduces Recovery Point Objectives (RPO)

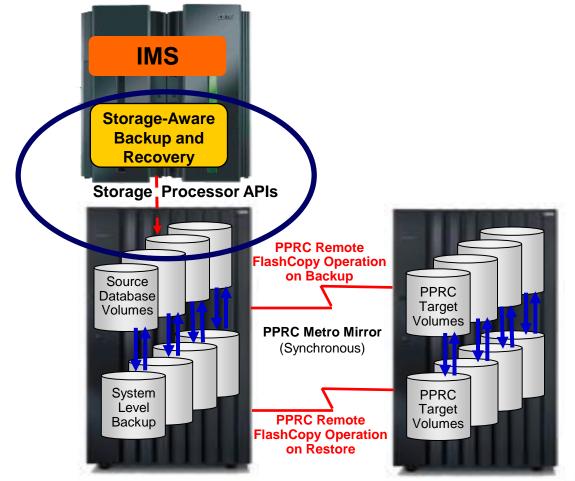
Using IMS SLBs for a Tertiary DR Site

Primary Production Site


IMS SLBs with PPRC Remote Pair FlashCopy

- Storage Aware Backup/Recovery and "Remote Pair FlashCopy" Support
 - FlashCopy to PPRC Primary volume while maintaining Full Duplex
 - FlashCopy Metro Mirror implementations only
- Preserve Mirror support option specified in installation ParmLib (FCTOPPRCP)
 - N Do not allow the PPRC primary to become a FlashCopy target
 - Y The pair can go into a duplex pending state
 - P It preferable that the pair does not go into a duplex pending state.
 - R It is required that the pair not go into a duplex pending state
- Copy Blade Support
 - FlashCopy blade
 - DFSMSdss copy blade

System Level Backup Without Remote Mirror FlashCopy



2011

System Level Backup With Remote Mirror FlashCopy

- FlashCopy data is not copied over PPRC links
- SLB drives remote pair FlashCopy operation
 - Remote PPRC production volumes Flashed to remote PPRC SLB volumes
- System level restore drives remote pair FlashCopy operation
 - Remote PPRC SLB volumes Flashed to remote PPRC production volumes

2011

IMS SLBs with XCR and PPRC without Remote Pair FlashCopy

- Assume IMS volumes are primary volumes in a PPRC metro mirror or XRC relationship
- Backup target volumes must not be in a PPRC or XRC relationship
- Backup volumes cannot be used for IMS system recovery without duplex pending state
- IMS application and object recovery allowed
 - DBR for IMS performs application and object recovery by copying data sets from the backup volumes to the source volumes
 - DFSMSdss used to copy data sets
 - Fast Replication Preferred option used to copy data
 - DFSMSdss uses slow copy methods as data sets cannot be Flashed to source PPRC or XRC volumes.

Implementation Planning Copy Blade Selection

- Know your storage processing infrastructure
 - What storage processors are used (EMC, IBM, HDS)
 - What fast-replication facilities are licensed and preferred
- Determine storage blade and fast-replication facilities to use
 - DFSMSdss Blade
 - IBM FlashCopy Blade
 - EMC TimeFinder Blade
 - HDS ShadowImage Blade
- Know the type of consistency function is best for your environment
 - IMS Suspend, Storage-based consistency

IBM Copy Blades

- IBM FlashCopy Blade
 - Provides support for IBM FlashCopy V2
 - Data set FlashCopy support for fast object / application recovery
 - ANTRQST calls issued to drive FlashCopy volume commands (fast performance)
 - Requires IMS Log Suspend
 - Supports IBM, EMC, HDS FlashCopy products

IBM DFSMSdss Copy Blade

- ADRDSSU utility invoked to perform volume copies
- Fast replication (preferred) is used Will support non fast replication DASD
- Data set FlashCopy support for fast database / application recovery
- Slower than using ANTRQST in native FlashCopy blade
- Requires IMS Log Suspend
- Supports FlashCopy (IBM, EMC, HDS), SnapShot (STK, RAMAC Virtual Array)

EMC Copy Blades

- EMC TimeFinder Blade
 - TimeFinder/Mirror
 - TimeFinder/Clone Mainframe Snap Facility
 - TimeFinder/Snap Virtual Devices
 - Allows multiple backups with reduced storage utilization
 - Incremental copy support for all copy methods
 - EMC Consistency Technology support for all volume copy methods
 - Reduce the need for database suspend functions
 - TimeFinder Data Set Snap facility to perform fast replication application / object restores.
 - IMS suspend not required when storage-based consistency technology is used

Hitachi Data Systems Copy Blades

- ShadowImage Blade (backup product implementation example)
 - Supports HDS native ShadowImage volume copy processes
 - Invoked using FlashCopy backup profile
 - Checks shadow_image field in backup product parameter library
 - N DBR drives FlashCopy
 - Y DBR drives Shadow mage
 - Incremental Copy Support
 - Requires an IMS log suspend operation
 - Can support IMS systems that span HDS and IBM storage using native methods (ShadowImage and FlashCopy)
 - HDS data set FlashCopy emulation used for fast replication object / application restores

Session Summarization

- IMS storage-aware database utilities provide storage integration to simplify database administration tasks
- IMS system backup solutions leverage storage-based fast-replication facilities and investments
 - Fast and non-intrusive backup operations with less administration
 - Reduces host CPU, I/O and storage utilization
 - Backups can be used for system, application, disaster restart
 - Parallel recovery reduces system and database recovery time
- IMS system cloning automaton allows production data to be leveraged easily and effectively
- IMS databases refreshed easily
- Fewer skills required to implement advanced IMS backup, recover, disaster recovery, and cloning solutions
- Implementation planning is important to optimize the benefits.

Complimentary SHARE Sessions

- Simplify and Improve DB2 Database Administration by Leveraging Your Storage System
 - Tuesday March 1, 2011
 - 9:30 10:30 AM
- Instant IMS and DB2 Backup and Restore Really?!
 - Mainstar Vendor Session
 - Tuesday March 1
 - 1:30 PM
 - Room 207D.

